SISTEMAS DE PRESIÓN
Disfruta la presión del agua

SISTEMAS DE PRESIÓN

Un hidroneumático EVANS®, es un sistema para presurizar que nos proporciona un suministro de agua constante y una presión uniforme en todas las salidas de agua.

Se llama sistema hidroneumático porque es un equipo que requiere para su funcionamiento una combinación adecuada de aire y agua para el cual contamos con un tanque precargado de aire y una MAC®. (Membrana de Acción Controlada) que contiene agua y que evita su contacto con el metal del tanque.

USOS Y BENEFICIOS

- Presión uniforme en toda tu casa

Ideal para cocinas, lavadoras, regaderas y monomandos

Ciclos de llenado más rápidos (Lavaplatos, lavadoras, tinas, w.c. y más)

Sistemas eficientes y silenciosos

MITOS Y REALIDADES

¿UN HIDRONEUMÁTICO ES DEMASIADO COSTOSO?
A diferencia del sistema tradicional de bomba con tinaco que lleva tuberia de subida al tinaco y de bajada a los servicios, un sistema hidroneumático puede presurizar directamente hacia los servicios desde abajo, lo cual resulta en un ahorro considerable en la red hidráulica de la instalación.

Además puede colocarse al pie de la instalación y no necesariamente en el techo por lo que no requiere material adicional para construir su base y/ó paredes para ocultarlo como el tinaco.

También se considera un sistema ahorrador de agua, ya que cuando contamos con presión de agua, generalmente necesitamos menor cantidad y menor tiempo para bañarnos, lavar los trastes y la ropa.

¿SI FALLA LA ENERGÍA ELÉCTRICA QUEDO SIN AGUA?

No, cuando falte el suministro eléctrico no nos quedamos sin agua porque siempre contaremos con la reserva de agua dentro del tanque. Entre más grande sea el tamaño del tanque mayor será el respaldo durante apagones. Además entre más grande sea el tanque menor será el número de veces que encienda la bomba resultando en un ahorro considerable de energia y alargando la vida útil de esta.

¿NECESITO CAMBIAR LA TUBERİA PARA INSTALAR UN HIDRONEUMÁTICO?

Si la instalación tiene menos de 15 años, no se requiere ningún cambio; si fuese más antigua, se puede cambiar o utilizar un rango de presión más bajo para evitar posibles fugas.

¿SON MUY COMPLICADAS LAS REPARACIONES DE UN HIDRONEUMÁTICO?

Se requiere de un minimo mantenimiento. Una vez calibrado el sistema, lo único que se debe revisar es la presión de aire dentro del tanque (primero se debe apagar la bomba y vaciar el agua del tanque) con un medidor de aire (gauge) cada 6 meses.

PARTES DEL TANQUE HYDROSMART®

CLASEIN

Disfruta de la presión del agua

[^0]
EVANS

Los Tanques Hidroneumáticos Evans cuentan con un innovador Sistema Hydro-MAC®, que evita que el metal entre en contacto con el agua y genere corrosión, malos olores y/ó sabores desagradables.

Para uso en residencias, lavanderias, hoteles, condominios, escuelas y hospitales.

TABLA DE DIMENSIONES							
CÓDIGO	CAPACIDAD (L)	TIPO	ALTO	ALTO DEL TANQUE SIN BASE (cm)	\varnothing DE TANQUE (cm)	$\begin{aligned} & \varnothing \text { DESCARGA } \\ & \text { NPT } \end{aligned}$	PESO (kg)
EQTH-025LE	25	Linea	41	41	31	$1 "$	8
EQTH-025HE	25	Horizontal	36	35	31	$1^{\prime \prime}$	8.5
EQTH-050LE	50	Linea	55	55	36	$1{ }^{*}$	12.5
EQTH-050HE	50	Horizontal	43	36	36	$1^{\prime \prime}$	14
EQTH-090VE	90	Vertical	78	63	46	$1 "$	17
EQTH-110VE	110		78	63	46	$1^{\prime \prime}$	17
EQTH-130VE	130		88	74	46	$1{ }^{\prime \prime}$	18
EQTH-150VE	150		78	63	56	$1{ }^{\prime \prime}$	20
EQTH-170VE	170		88	74	56	$1 *$	23
EQTH-210VE	210		99	85	56	$1{ }^{\prime \prime}$	26
EQTH-250VE	250		119	101	56	$11 / 4^{\prime \prime}$	43
EQTH-310VE	310		104	90	66	$11 / 4{ }^{\prime \prime}$	45.5
EQTH-380VE	380		119	101	66	$11 / 4^{\prime \prime}$	58
EQTH-480VE	480		150	137	66	$11 / 4^{\prime \prime}$	61

Material: Lámina rolada calibre \#14. Membrana de Butilo.

SELECCIONA TU EQUIPO HYDROSMART®

Disfruta de la presión del agua

SELECCIONA TU HYDROSMART®
De acuerdo al número de llaves y el número de pisos de tu casa.

CÓDIGO EAP050-025HE EAJ050-050HE EAJO50-09OVE EAJO50-11OVE EAJO50-13OVE EAJO75-15OVE EAJ100-17OVE

\# de llaves \# de Pisos	$\begin{aligned} & 1 \mathrm{a} 3 \\ & 1 \cong \end{aligned}$	$\begin{aligned} & 6 a 9 \\ & 2 \text { 20 } \end{aligned}$	$6 \text { a } 13$ $2 \text { 를 }$	$13 \text { a } 17$ $2 \hat{B}$	17 a 21 2会	21 a 24 2 를	$\begin{gathered} 24 \text { a } 28 \\ 3 \text { 亳 } \end{gathered}$
PRESIƠN RECOMENDADA EN UNA CASA DE 1 PISO 20-40PSI							

Dimensiones de HydroSmart ${ }^{\circledR}$
HORIZONTAL (HE)

TABLA DE DIMENSIONES CM											
CÓDIGO	A	B	c	D	E	F	G	H	1	\varnothing K	$\varnothing \mathrm{L}$
EAP050-025HE	60	37	49	12	5	18	51	31	32	$1{ }^{\prime \prime}$	$1 "$
EAJ050-050HE	65	43	59	17	5	22	55	35	36	$1{ }^{\prime \prime}$	$1 "$
EAJ050-090VE	107	77	46	46	31	4.5	86	96	51	$1{ }^{\prime \prime}$	$1 "$
EAJ050-110VE	107	77	46	46	31	4.5	86	96	51	$1^{\prime \prime}$	$1 "$
EAJ050-130VE	117	91	46	46	32	4.5	103	107	51	$1^{\prime \prime}$	$1 "$
EAJ075-150VE	105	78	56	56	40	4.5	86	95	56	1 $1 / 4{ }^{\prime \prime}$	$1 "$
EAJ100-170VE	115	88	56	56	40	4.5	96	105	56	$11 /{ }^{\prime \prime}$	$1 "$

SELECCIONA TU HYDROSMART®
De acuerdo al número de llaves y pisos de tu casa.

EVANS

- Automatiza el paro y arranque de la bomba para mantener siempre presión en la linea.
- Enciende por baja presión y apaga hasta que el equipo llega a su máxima presión y/ó el flujo es 0 .
- Incluye válvula check, manómetro y sensor de flujo.
- Puede instalarse sin hidroneumático. (De ser posible, instalarlo con uno pequeño puede alargar la vida útil de su equipo).
- Protege a la bomba contra corrida en seco. (Para bombas de superficie, es necesario volver a cebar la bomba si se queda sin agua la tubería).

CÓDIGO	PESO	MEDIDAS LARGO \times ANCHO \times ALTO
EASY-PRESS	1 kg	$20 \times 10 \times 1 \mathrm{~cm}$

cÓdIGO	$\begin{gathered} \varnothing \\ \text { SUCCIÓN } \end{gathered}$	$\begin{gathered} \varnothing \\ \text { DESCARGA } \end{gathered}$	POTENCIA	VOLTAJE ALIMENTACIÓN	CORRIENTE	*PRESIÓN PREPROGRAMADA	PRESIÓN MÁXIMA	flujo máximo RECOMENDADO
EASY-PRESS	1^{1}	$1 "$	$1 \mathrm{HP} / 15 \mathrm{HP}$	$110 / 220 \mathrm{~V} \sim 60 \mathrm{~Hz} 19$	12 A	30 PSI	145 PSI	60 V min

"PRESIÓN PREPROGAMADA DE ARRANQUE, SE PUEDE AJUSTAR
300

EVANS

- Sistemas integrales de presión compuestos por: bomba, presurizador, tapón para rápido cebado y cable con clavija.
- Pre ensamblados y conectados listos para instalarse.
- Ideales para presurizar instalaciones succionando desde la cisterna hacia los servicios o a la salida del tinaco.
*SEP-SXH075: el equipo viene a 110 V de fábrica, si desea conectarlo a 220 V es necesario destapar la caja de bornes del motor y reacomodar las conexiones en base al diagrama eléctrico impreso en la tapa.
**SEP-JX2100: se recomienda solamente utilizar en instalaciones a 220 V ya que en 110 V excede la máxima corriente permitida por el

MANGUERAS DE SUCCIÓN CON VÁLVULA DE PIE

VARIADORES DE FRECUENCIA EVANS-PRESS

CLASEIK

Disfruta de la presión del agua

- Sistemas de presión pre calibrados y pre ensamblados.
- Incluyen bomba, tanque, variador, manómetro y válvula check de 5 vias.
- Ahorro de electricidad de hasta un 50%.
- Suministran presión constante sin importar el número de llaves abiertas.
- Ahorro de espacio. No utilizan tinaco ni tanque hidroneumático grande.
- Opciones con bomba de superficie o sumergible.

SPCBP-SXH1E100
*Los equipos de superficie se surten con tanque hidroneumático de 3 L .
*Los equipos sumergibles se surten con tanque hidroneumático de 25 L .

SPCBP-SX1ME100

CÓDIGO	\varnothing SUCCIÓN	\varnothing DESCARGA	POTENCIA	VOLTAJE ALIMENTACIÓN	CORRIENTE	PRESIÓN PREPROGRAMADA	FLUJO MAXIMO EN PRESIÓN PREPROGRAMADA
SPCBP-SXH1E100	$11 / 4^{\prime \prime}$	$l^{\prime \prime}$	1 HP		14 A	40 PSI	100 Vmin
SPCBP-SX1MEO50	N/A	$11 / 4^{\prime \prime}$	$1 / 2 \mathrm{HP}$	$110 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$	10 A	40 PSI	50 Vmin
SPCBP-SX1ME100	N/A	$11 / 4^{\prime \prime}$	1 HP		14 A	40 PSI	$70 \mathrm{l} / \mathrm{min}$

SPCBP-SXH1E0300

CÓDIGO	PESO	MEDIDAS LARGO \times ANCHO \times ALTO
SPCBP-SHEO1OOA	18 kg	$47 \times 37 \times 53 \mathrm{~cm}$
SPCBP-SXHIEO100	18 kg	$47 \times 37 \times 53 \mathrm{~cm}$
SPCBP-SXHIEO200	24 kg	$53 \times 45 \times 83 \mathrm{~cm}$
SPCBP-SXHIEO300	26 kg	$53 \times 45 \times 83 \mathrm{~cm}$
SPCBP-SXIMEO1OO	28 kg	$75 \times 40 \times 70 \mathrm{~cm}$
SPCBP-SX4MEO200	35 kg	$75 \times 40 \times 70 \mathrm{~cm}$

- Sistemas de presión pre calibrados y pre ensamblados.
- Incluyen bomba, tanque, variador, manómetro y válvula check de 5 vias.
- Ahorro de electricidad de hasta un 50%.
- Suministran presión constante sin importar el número de llaves abiertas.
- Ahorro de espacio. No utilizan tinaco ni tanque hidroneumático grande.
- Opciones con bomba de superficie o sumergible.

CÓDIGO	$\begin{gathered} \varnothing \\ \text { SUCCIÓN } \end{gathered}$	$\begin{gathered} \varnothing \\ \text { DESCARGA } \end{gathered}$	POTENCIA	VOLTAJE ALIMENTACIÓN	CORRIENTE	PRESIÓN PREPROGRAMADA	FLUJO MÁXIMO EN PRESION PREPROGRAMADA
SPCBP-3HEO100A	11/4"	1^{1}	1 HP	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1$ ¢	9 A	30 PSI	$1001 / \mathrm{min}$
SPCBP-SXH1E0100	11/4"	$1{ }^{1}$	1 HP		9 A	50 PSI	70 V min
SPCBP-SXH1E0200	11/2"	11/2'	2 HP		15 A		$851 / \mathrm{min}$
SPCBP-SXH1E0300	$11 / 2{ }^{\text {" }}$	$11 / 2^{\prime}$	3 HP		24 A		$150 \mathrm{l} / \mathrm{min}$
SPCBP-SX1ME0100	N/A	$11 / 4^{\prime \prime}$	1 HP		9 A		$60 \mathrm{l} / \mathrm{min}$
SPCBP-SX4MEO200	N/A	$11 / 4^{\prime \prime}$	2 HP		15 A		$110 \mathrm{l} / \mathrm{min}$

NOTA: EN CASO DE SER NECESARAO EL SISTEMA SE PUEDE CALIBRAR A UNA PRESIÓN DIFERENTE A LA QUE SALE DE FÁBRICA. CONSULTE LA CURVA DEL SISTEMA.

SISTEMA DE PRESIÓN CONSTANTE

Disfruta la presión del agua

EVANS

- Sistema de presión constante con motor de magnetos permanentes.
- El sistema más eficiente que existe en el mercado actualmente.
- Su motor extra eficiente, sistema de arranque suave y velocidad variable generan ahorros de energia de hasta el 50\%.
- Incluye hidroneumático en su interior.

CÓDIGO	\varnothing SUCCIÓN	\varnothing DESCARGA	POTENCIA	VOLTAJE	CORRIENTE	FLUJO MAXIMO	PRESIÓN MAXIMA	PUNTO DEMAYOR EFICIENCIA
PRESSURE-CASE	$1^{\prime \prime}$	$1^{\prime \prime}$	1 HP	$110 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$	9.7 A	90 Vmin	37 m	$60 \mathrm{l} / \mathrm{mina} 20 \mathrm{~m}$
PRESSURE-PACK	$1^{\prime \prime}$	$\mathrm{l}^{\prime \prime}$	1 HP	$220 \mathrm{~V} \sim 60 \mathrm{~Hz} 1 \Phi$	7 A	90 Vmin	37 m	$60 \mathrm{l} / \mathrm{mina} 20 \mathrm{~m}$

Los alternadores simultaneadores son gabinetes que controlan el funcionamiento de 203 bombas. La presión en el sistema oscila entre un rango preestablecido que pueda ajustarse y la velocidad de operación es constante con arranques de tensión plena. Se surten dentro de un gabinete metálico con protección IP51, recubierto con pintura electroestática y altamente resistente a la corrosión. Incluye palanca de selección: Manual/Fuera/Automático asi como indicadores LED de trabajo y falla para cada bomba.

Sus principales funciones son:

1) Presurizar por medio de presostatos
2) Vaciar cárcamos o llenar tanques elevados por medio de flotadores

Los principales beneficios de instalar un alternador simultaneador son:

1) Aseguran un desgaste uniforme de las bombas.
2) En caso que un equipo necesite servicio/mantenimiento, la instalación sigue funcionando.
3) Trabajan alternando cuando la demanda de agua es moderada y en simultáneo en momentos de alto consumo.
4) Protegen a las bombas de: sobrecarga, falta de agua, variaciones de voltaje, corto circuito y caida de fase.

TODOS NUESTROS GABINETES SE ENSAMBLAN CON COMPONENTES ELECTRÓNICOS DE LA MEJOR CALIDAD COMO WEG Y ABB.

GUÍA DE CODIFICACIÓN

(1) ACCESORIO BOMBA
(2) TIPO

AS
Control de 2 bombas sumergibles o de superficie para agua limpia*
AST Control de 3 bombas sumergibles o de superficie para agua limpia*
(4) voltaje

F	$127 \mathrm{~V} \sim 60 \mathrm{~Hz}$
G	$220 \mathrm{~V} \sim 60 \mathrm{~Hz}$
H	$440 \mathrm{~V} \sim 60 \mathrm{~Hz}$

(5) APLICACIÓN

Los gabinetes AS y AST sin terminación se usan para
presurización.
Incluyen 2 o 3 presostatos según sea el caso y un
flotador como protección por bajo nivel de agua.
NLos gabinetes AS y AST con terminación "N" se usan para llenado y/o vaciado de depósitos. Incluyen 2 o 3 flotadores según sea el caso y otro adicional como protección por bajo nivel de agua.

Los gabinetes ASy AST sin terminación se usan para presurización.
Incluyen 2 o 3 presostatos según sea el caso y un flotador como protección por bajo nivel de agua. Los gabinetes AS y AST con terminación " N " se usan N para llenado y/o vaciado de depósitos. Incluyen 2 o 3 flotadores según sea el caso y otro adicional como protección por bajo nivel de agua.

Los gabinetes de presión constante controlan el funcionamiento de 2 a 4 bombas con arranque y paro suave. así como velocidad variable de acuerdo a la demanda de agua requerida. Su principal función es presurizar residencias y edificios. Se surten dentro de un gabinete metálico con protección IP51, recubierto con pintura electroestática, altamente resistente a la corrosión.

Incluye palanca de selección: Manual/Fuera/Automático asi como indicadores LED de trabajo y falla para cada bomba. Los variadores dentro del gabinete están intercomunicados entre si para accionar el número de bombas necesarias para tener siempre una presión uniforme en toda la instalación sin importar la demanda de agua.

Los principales beneficios son:

1) Ahorran hasta un 50% de energia con respecto a un alternador simultaneador convencional.
2) Aseguran un desgaste parejo de las bombas.
3) En caso de que un equipo necesite servicio o mantenimiento, la instalación sigue funcionando.
4) Trabajan alternando cuando la demanda de agua es moderada y en simultáneo en momentos de alto consumo.
5) Protegen a las bombas de: sobrecarga, falta de agua, variaciones de voltaje, corto circuito y caida de fase.
6) Pueden usar tanques de menor capacidad que con un alternador simultaneador, por lo que ahorran espacio en el cuarto de máquinas.
7) En caso de requerir un generador de respaldo para las bombas, usar un gabinete de presión constante reduce el tamaño del generador a menos de la mitad que con un alternador simultaneador, ahorrando mucho dinero en la adquisición de este.

TODOS NUESTROS GABINETES SE ENSAMBLAN CON COMPONENTES ELECTRÓNICOS DE LA MEJOR CALIDAD COMO WEG Y ABB.
(1) GABINETES DE PRESIÓN CONSTANTE
(2) CANTIDAD DE BOMBAS A CONTROLAR
(3) BOOSTER PRESS
(4) POTENCIA DE LAS BOMBAS 5 VOLTAJE

EVANS

SISTEMAS CENTRALES DE PRESIÓN VARIABLE

Disfruta de la presión del agua

Los sistemas de presión variable están compuestos por 2 ó 3 bombas con 2 ó 3 tanques según sea el caso. Incluyen también un gabinete de arranque a tensión plena y velocidad constante con todas las protecciones necesarias para garantizar el óptimo funcionamiento de tu equipo: protección por bajo nivel de agua (se surte con flotador), protección por corto circuito, sobrecarga, variaciones de voltaje. falla de fase, entre otros.

Incluye clemas debidamente identificadas en su interior para agilizar la puesta en marchae instalación eléctrica del equipo. Además, los tableros incluyen los indicadores LED necesarios para facilitar al máximo la interpretación de operación del equipo y su mantenimiento, asi como botones de paro en caso de emergencias.

Existen modelos de alto flujo, de alta presión o ambos según el tipo y potencia de bomba seleccionado.

Los sistemas de presión constante están compuestos por 2 ó 4 bombas con 1 ó 2 tanques según sea el caso. Incluyen también un gabinete de arranque suave y velocidad variable con todas las protecciones necesarias para garantizar el óptimo funcionamiento de tuequipo: protección por bajo nivel de agua (se surte con flotador), protección por corto circuito, sobrecarga. variaciones de voltaje, falla de fase, entre otros.

Su arranque suave y velocidad variable alargan considerablemente la vida útil de los motores de las bombas, las membranas de los tanques y los componentes de la red hidráulica ya que mantienen la línea presurizada a una misma presión y evitan el golpe de ariete.

Los equipos de presión constante siempre utilizan menor capacidad de almacenamiento (menos tanques hidroneumáticos y más pequeños) lo que los hace más compactos y ahorran asi espacio en el cuarto de máquinas.

Si se considera respaldar el sistema de bombeo con generador para evitar quedarse sin agua durante apagones, es importante considerar que un sistema de presión constante necesita un generador exponencialmente más pequeño que un sistema de presión variable gracias a su arranque suave.

CLASE $1 K$
SISTEMAS CENTRALES DE NIVEL VARIABLE
Abastecimiento de agua confiable

La principal función de los sistemas centrales de nivel variable es el llenado de tinacos en grandes construcciones, edificios, parques industriales, etc. Están compuestos por 2 ó 3 bombas según sea el caso. Se surten con flotadores para controlar el alternado y simultaneado de las bombas según el nivel de agua en el depósito. Incluyen también un gabinete de arranque a tensión plena y velocidad constante con todas las protecciones necesarias para garantizar el óptimo funcionamiento de tu equipo: protección por bajo nivel de agua, corto circuito, sobrecarga, variaciones de voltaje, falla de fase, entre otros.

Incluye clemas debidamente identificadas en su interior para agilizar la puesta en marchae instalación eléctrica del equipo. Además, los tableros incluyen los indicadores LED necesarios para facilitar al máximo la interpretación de operación del equipo y su mantenimiento, asi como botones de paro en caso de emergencias.

Existen modelos de alto flujo, de alta presión o ambos según el tipo y potencia de bomba seleccionado.

SCPC $4, \underbrace{\text { SXH }} \mathbf{5}, \mathbf{1} 480$

1) TIPO DE SISTEMA CENTRAL

CÓDIGO	DESCRIPCIÓN
SCPV	SISTEMA CENTRAL DE PRESIÓNVARIABLE
SCNV	SISTEMA CENTRAL DE NIVEL VARIABLE
SCPC	SISTEMA CENTRAL DE PRESIÓN CONSTANTE

2 NÚMERO DE BOMBAS

CÓDIGO	DESCRIPCIÓN
2	DOS BOMBAS
3	TRES BOMBAS
4	CUATRO BOMBAS

3) LÍNEA DE BOMBA

CÓDIGO	DESCRIPCIÓN
4 H	4 H
5 H	5 H
6 H	6 H
SXH	SSXH15, SSXH25, SSXH45, SSXH6O
SVA	SSXV25
SVB	SSXV55
SVC	SSXV80
SVD	SSXV100
SVE	SSXV140
SVF	SSXV200
SVG	SSXV300
SVH	SSXV400
XH2	XH2
31	31 A
41	41
51	51
61	61
71	71
MT1	MTIA
MT2	MT2A
MT3	MT3
MT4	MT4, MT4A

*NOTA: Para los sistemas centrales con bombas SSXV, sin importar la cantidad ó potencia de bombas, la selección del tanque incluido se limitará a un tanque según el siguiente
listado:
SVA $=50 \mathrm{~L}$
SVB $=110 \mathrm{~L}$
SVC $=130 \mathrm{~L}$
SVD $=150 \mathrm{~L}$
SVE $=210 \mathrm{~L}$
SVF = 250L
SVG $=380 \mathrm{~L}$
$\mathrm{SVH}=480 \mathrm{~L}$
(4) POTENCIA POR BOMBA

CÓDIGO	DESCRIPCIÓN
2	2 HP
2 A	$2 \mathrm{H} / 2 \mathrm{HP}$
3	3 HP
5	5 HP
7	7.5 HP
10	10 HP
15	15 HP
20	20 HP
25	25 HP
30	30 HP
40	40 HP
50	50 HP

5
ACOMETIDA DE LA INSTALACIÓN

CÓDIGO	DESCRIPCIÓN
M	MONOFÁSICO 220 V
(OMITIR CAMPO)	TRIFÁSICO 220 V
H	TRIFÁSICO 440

(6)

CANTIDAD DE TANQUES

CÓDIGO	DESCRIPCIÓN
1	UN TANQUE
2	DOS TANQUES
3	TRES TANQUES

(7)

CAPACIDAD DEL TANQUE

CÓDIGO	DESCRIPCIÓN
050	EQTH-05OLE
090	EQTH-090VE
10	EQTH-110VE
126	EQTHD-126V
130	EOTH-130VE
150	EQTH-150VE
167	EQTHD-167V
170	EQTH-17OVE
210	EQTH-210VE
235	EQTHD-235V
250	EQTH-250VE
306	EQTHD-306V
310	EOTH-310VE
340	EQTH-340VE
380	EQTH-380VE
450	EQTHD-450V
480	EQTH-480VE

ARRANCADORES MANUALES

claseik

Triplica la garantía de tus equipos

Los arrancadores manuales brindan una protección integral a los equipos con motor eléctrico como pueden ser bombas, hidrolavadoras, vibradores de concreto o equipos en donde su activación sea manual.

Estos arrancadores cuentan con envolvente termoplástico con un grado de protección IP65, para uso a la intemperie.

Los principales beneficios son:

1) Protegen al equipo contra caida de fase, corto circuito y sobrecargas.
2) Incluyen un monitor de voltaje que desconecta el equipo de la energía eléctrica en caso de que ésta esté por debajo de lo permitido para el motor.
3) Posibilidad de agregar candado de seguridad para seccionar la bomba y asegurar que esté desenergizada al momento de dar mantenimiento.

El uso de este arrancador satisface los requerimientos de la NOM-OO1-SEDE-2018 correspondientes a las protecciones contra cortocircuito y sobrecarga que se deben incluir en las instalaciones eléctricas de los equipos que incluyan motores eléctricos.

[^1]ARRANCA DORES MANUALES INDIVIDUALES

| CÓDIGO
 CANTIDAD DE BOMBAS
 ACONTROLAR | POTENCIA
 POR BOMBA (HP) | VOLTAJE NOMINAL |
| :--- | :---: | :---: | :---: | :---: | :---: | RANGO DE CORRIENTE (A)

Esta es la válvula ideal para evitar el contra flujo en la tubería que pueda dañar los equipos de bombeo.

El sello de elastómero de esta bomba promueve que cierre la velocidad adecuada para permitir que pase el flujo de inercia (presión positiva) pero cierre justo antes de que el contra flujo (presión negativa) pase a través de la válvula en sentido contrario generando daños a la bomba.

El diseño de la válvula es tipo "paso completo", que significa que no restringe el flujo en absoluto.

Útil para instalaciones verticales u horizontales.

- Presión máxima de trabajo: $16 \mathrm{~kg} / \mathrm{cm}^{2}$
- Presión minima para vencer la check: $1 / 2 \mathrm{~kg} / \mathrm{cm}^{2}$
- Temperatura: $-20^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$

CÓDIGO	\varnothing ROSCA (NPT)	$\mathbf{A}(\mathrm{cm})$	$\mathbf{H}(\mathrm{cm})$	PESO (kg)
ABVC100B	$\mathbf{1}^{*}$	5.65	4.4	0.25
ABVC125B	1.25^{*}	6.3	5.85	0.36
ABVC150B	1.5^{*}	7.15	6.55	0.46
ABVC200B	2^{*}	8.05	8.3	0.66
ABVC300B	3^{*}	10	11.1	2.1
ABVC400B	4^{*}	11.6	13.85	3.4

No.	DESCRIPCIÓN	MATERIAL
1	ÉMBOLO	LATÓN
2	RESORTE	AISI 3O4
3	EMPAQUE	NBR
4	CUERPO	LATÓN

EVANS

Las válvulas de pie son útiles para instalarse en la succión de bombas de superficie.

Evitan que labombapierdala cebay continúe operando correctamente. Su ampliación del diámetro en el cuerpo permite el libre paso del fluido. sin limitar el flujo de la bomba y ahorrando considerablemente en consumo energético comparado con una válvula de pie convencional.

Su cuerpo 100% de latón la hace la opción más resistente con una rejilla que evita la entrada de sólidos a la línea de succión.

La válvula contra golpe de ariete tipo "L" es ideal para unir dos tuberias bridadas a 90° y absorber el golpe de ariete en ambas direcciones.

Sustituye un codo convencional.
Reduce ruidos, vibraciones, costos de mantenimiento del sistema hidráulico y alarga la vida útil de la tubería.

Funciona por medio de un diafragma y cámara de aire.
Incluye: manómetro y válvula de aire.

PRESIÓN EN TUBERIA	PRESIÓN EN CAMARA DEAIRE
$3-4 \mathrm{~kg} / \mathrm{cm}^{2}$	$1.8-2 \mathrm{~kg} / \mathrm{cm}^{2}$
$4-5 \mathrm{~kg} / \mathrm{cm}^{2}$	$2-2.5 \mathrm{~kg} / \mathrm{cm}^{2}$
$5-10 \mathrm{~kg} / \mathrm{cm}^{2}$	$2.5-3.5 \mathrm{~kg} / \mathrm{cm}^{2}$
$10-12 \mathrm{~kg} / \mathrm{cm}^{2}$	$3.5-5 \mathrm{~kg} / \mathrm{cm}^{2}$

- Presión máxima de trabajo: $12 \mathrm{~kg} / \mathrm{cm}^{2}$
- Presión máxima cámara de aire: $5 \mathrm{~kg} / \mathrm{cm}^{2}$
- Material de diafragma: NBR
- Temperatura: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$

CÓDIGO	ØDE CONEXIÓN	$\mathbf{A}(\mathbf{c m})$	$\mathbf{B}(\mathrm{cm})$	$\mathbf{C}(\mathbf{c m})$	PESO (kg)	CAMMRA DE AIRE $\left(\mathbf{c m}^{2}\right)$
$\mathbf{A B - V C G A 2 O O L ~}$	2^{*}	23	11	10.5	17	1490
$\mathbf{A B - V C G A 3 O O L}$	3^{*}	27.5	14	12.5	22	2465
$\mathbf{A B - V C G A 4 O O L}$	4^{*}	34.5	15.5	15	37.5	5535
$\mathbf{A B - V C G A 6 0 O L}$	6^{*}	46.7	20	20	70	15325

PRESIÓN DE TUBERIA	PRESIÓN EN CAMMARA DE AIRE
$3-4 \mathrm{~kg} / \mathrm{cm}^{2}$	$1.8-2 \mathrm{~kg} / \mathrm{cm}^{2}$
$4-5 \mathrm{~kg} / \mathrm{cm}^{2}$	$2-2.5 \mathrm{~kg} / \mathrm{cm}^{2}$
$5-10 \mathrm{~kg} / \mathrm{cm}^{2}$	$2.5-3.5 \mathrm{~kg} / \mathrm{cm}^{2}$
$10-12 \mathrm{~kg} / \mathrm{cm}^{2}$	$3.5-5 \mathrm{~kg} / \mathrm{cm}^{2}$

La válvula contra golpe de ariete tipo "l" se puede instalar en posición vertical u horizontal. Gracias a sus materiales de bronce. NBR y Vitón ${ }^{\oplus}$ ofrece una gran durabilidad incluso en las aplicaciones más exigentes.

Sus aplicaciones son muy extensas, puede instalarse entre dos niples con el simple uso de una tee para reducir el golpe de ariete a lo largo de la tubería. Además de reducir el ruido y las vibraciones a lo largo de la tuberia, esta válvula ayuda a alargar la vida útil de la red hidráulica considerablemente.

Funciona por medio de un diafragma y cámara de aire compresible que absorben los golpes del retroceso de agua al apagar el equipo de bombeo.

- Presión máxima de trabajo: $12 \mathrm{~kg} / \mathrm{cm}^{2}$
- Presión máxima cámara de aire: $5 \mathrm{~kg} / \mathrm{cm}^{2}$
- Material de la válvula: Bronce
- Material de diafragma: NBR/Vitón
- Temperatura: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$

CÓDIGO	\emptyset ROSCA (NPT)	L(cm)	D (cm)	PESO (kg)	CÁMARA DE AIRE (CM ${ }^{3}$)
AB-VCGA100I	$1 *$	11	6.4	0.5	63
AB-VCGA125I	$1^{1 / 4}{ }^{*}$	12.2	8	1.2	180
AB-VCGA150I	$11 / 2^{*}$	13.3	9.2	1.4	205

Esta es la válvula ideal para evitar el contra flujo en la tuberia que pueda dañar los equipos de bombeo.

El sello de elastómero de esta bomba promueve que cierre a la velocidad adecuada para permitir que pase el flujo de inercia (presión positiva) pero cierre justo antes de que el contra flujo (presión negativa) pase a través de la válvula en sentido contrario generando daños a la bomba.

El diseño de la válvula es tipo "paso completo", que significa que no restringe el flujo en absoluto.

Útil para instalaciones verticales u horizontales.
Cuenta con un Bypass que es útil para descargar el agua de la línea antes de desinstalar si fuera necesario.

- Presión máxima de trabajo: $12 \mathrm{~kg} / \mathrm{cm}^{2}$
- Presión mínima para vencer la check: $1 \mathrm{~kg} / \mathrm{cm}^{2}$
- Temperatura: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$

cÓdIGO	\emptyset DECONEXIÓN	A (cm)	$\mathrm{H}(\mathrm{cm})$
AB-VCs200B	2^{\prime}	18.3	12.2
AB-vCs300B	3	21	14.7
AB-VCS400B	4^{*}	22	16
AB-VCS600B	$6 *$	28	18

PRESIÓN EN TUBERIA	PÉRDIDA DEFLUJO (\%)
$2 \mathrm{~kg} / \mathrm{cm}^{2}$	20%
$3 \mathrm{~kg} / \mathrm{cm}^{2}$	15%
$4 \mathrm{~kg} / \mathrm{cm}^{2}$	10%
$5-12 \mathrm{~kg} / \mathrm{cm}^{2}$	$<10 \%$

- Presión máxima de trabajo: $12 \mathrm{~kg} / \mathrm{cm}^{2}$
- Presión mínima para vencer la check: $1 \mathrm{~kg} / \mathrm{cm}^{2}$
- Temperatura: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$

DESCRIPCIÓN	
MATERIAL	
Cuerpo	Fundición de hierro
Tapa cubierta	Fundición de hierro
Disco	Fundición de hierro
Anillo de asiento del cuerpo	Bronce
Anillo del disco	Bronce
Tornillo de la tapa	Acero
Tuerca del tornillo de la tapa	Acero
Empaque	NBR
Plato del cuerpo	Aluminio

PRESIÓN EN TUBERIA	PÉRDIDA DE FLUJO (\%)
$2 \mathrm{~kg} / \mathrm{cm}^{2}$	25%
$3 \mathrm{~kg} / \mathrm{cm}^{2}$	20%
$4 \mathrm{~kg} / \mathrm{cm}^{2}$	15%
$5-12 \mathrm{~kg} / \mathrm{cm}^{2}$	$<15 \%$

Esta válvula check permite que el fluido pase en una sola dirección y evita regresión del mismo. Tiene un disco sujetado mediante un pasador de alta resistencia, que está suspendido dentro del cuerpo de la válvula, abre y cierra automáticamente mediante la presión del fluido, cuando la presión empieza a descender este disco se cierra disminuyendo considerablemente el golpe de ariete y asi puede proteger su tuberia y bomba.
Debe ser instalada de manera horizontal únicamente.

Aplicaciones:

Las válvulas check de columpio tienen una gran gama de aplicaciones como en tuberias de agua potable, energía eléctrica (en instalaciones hidráulicas como hidroeléctricas, calderas, etc.) entradas y salidas de tanques, drenajes, procesos quimicos, tratamiento de aguas, etc.

Ventajas:

- Acceso por la parte superior para facilitar el mantenimiento de la válvula sin necesidad de quitarla.
- No restringe el flujo ni el paso de sólidos en tuberia.
- El pasador de alta resistencia alarga la vida de la válvula.
- El disco posee alta resistencia y rigidez.

| CÓDIGO | DN
 (inches) | \mathbf{L}
 $(\mathbf{c m})$ | \mathbf{D}
 $(\mathbf{c m})$ | \mathbf{K}
 $(\mathbf{c m})$ | \mathbf{G}
 $(\mathbf{c m})$ | \mathbf{H}
 $(\mathbf{c m})$ | \mathbf{b}
 $(\mathbf{c m})$ | $\mathbf{n - d \mathbf { d }}$
 $(\mathbf{c m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A B - V C C 2 0 0 B}$ | 2^{*} | 20.3 | 15.2 | 12.1 | 9.21 | 13.7 | 1.9 | $4-\varnothing 1.9$ |
| $\mathbf{A B - V C C 3 0 0 B}$ | 3^{*} | 24.1 | 19.1 | 15.3 | 12.7 | 15.6 | 2.38 | $4-\varnothing 1.9$ |
| $\mathbf{A B - \mathbf { V C C 4 O O B }}$ | 4^{*} | 29.2 | 22.9 | 19.1 | 15.72 | 18 | 2.38 | $8-\varnothing 1.9$ |
| $\mathbf{A B - V C C 6 0 0 B}$ | 6^{*} | 35.6 | 27.9 | 24.1 | 21.59 | 22.3 | 2.54 | $8-\varnothing 2.2$ |

Las válvulas reductoras de presión bridadas están diseñadas para las instalaciones hidráulicas donde:

1) Se requiere una presión estable (ejemplo: aires acondicionados, equipos contra incendio, etc.)
2) Hay una limitante de presión (por ejemplo: calentadores, lavavajillas, tuberias que soportan un máximo de presión, etc.).
3) En sistemas de presión que fueron dimensionados para las salidas de agua más lejanas, es necesario reducir la presión en las salidas de agua más cercanas.

Ayudan a mantener la presión estable a la salida de la válvula sin importar las variaciones de presión a la entrada.

Válvula piloto

Controla la válvula principal cuando alcanza la presión de salida ajustada, esta ajustará la presión en la cámara y asi abrirá compuerta de la válvula para mantener la presión de salida.

- Presión máxima de trabajo: $16 \mathrm{~kg} / \mathrm{cm}^{2}$
- Temperatura del fluido: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$
- Rango de presión de ajuste: $1 \sim 5 \mathrm{~kg} / \mathrm{cm}^{2}$

| CÓDIGO | DN
 (inches) | \mathbf{L}
 $(\mathbf{c m})$ | \mathbf{D}
 $(\mathbf{c m})$ | \mathbf{K}
 $(\mathbf{c m})$ | \mathbf{G}
 $(\mathbf{c m})$ | \mathbf{A}
 $(\mathbf{c m})$ | \mathbf{B}
 $(\mathbf{c m})$ | \mathbf{b}
 $(\mathbf{c m})$ | $\mathbf{n - d \mathbf { d 1 }}$
 $(\mathbf{c m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A B - V R D P 2 0 0 B}$ | 2^{*} | 19 | 15.2 | 12.1 | 9.21 | 18 | 12.5 | 1.9 | $4-\varnothing 1.9$ |
| $\mathbf{A B - V R D P 3 0 0 B}$ | 3^{*} | 22.5 | 19.1 | 15.3 | 12.7 | 20 | 14.5 | 2.38 | $4-\varnothing 1.9$ |
| $\mathbf{A B - V R D P 4 0 0 B}$ | 4^{*} | 25 | 22.9 | 19.1 | 15.7 | 22.5 | 16 | 2.38 | $8-\varnothing 1.9$ |
| $\mathbf{A B - V R D P 6 0 0 B}$ | 6^{*} | 31 | 27.9 | 24.1 | 21.6 | 26 | 17 | 2.54 | $8-\varnothing 2.2$ |

- Ideales para aplicaciones con agua o aire.
- Presión máxima de trabajo: $16 \mathrm{~kg} / \mathrm{cm}^{2}$
- Temperatura del fluido: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$
- Rango de presión de ajuste: $1 \sim 5 \mathrm{~kg} / \mathrm{cm}^{2}$

Las válvulas reductoras de presión roscadas son ideales para aplicaciones donde los requerimientos de presión son muy variados de unos servicios a otros. Generalmente, los sistemas de bombeo y de presión deben ser calculados en base a la aplicación que requiera la mayor presión (por ejemplo: el piso más alto de una torre), aun asi deben considerar otras aplicaciones donde necesiten menor presión (por ejemplo: el piso mas bajo de una torre).

Estas válvulas reducen la presión de salida inclusive si la presión de entrada es muy variable o inestable, asegurando así que la presión de salida sea siempre la adecuada, sin comprometer el flujo en la tuberia.

Puede calibrar la presión deseada de salida de la válvula, utilizando el tornillo de ajuste y verificando en el manómetro.

CÓDIGO	\varnothing ROSCA (NPT)	$\mathbf{H}(\mathrm{cm})$	$\mathbf{L}(\mathrm{cm})$	PESO (KG)
$\mathbf{A B - V R D P 1 0 0 R ~}$	1^{*}	8	8	6.4
AB-VRDP125R	114^{*}	8.5	9	1.2
$\mathbf{A B - V R D P 1 5 0 R}$	112^{*}	11	11	2
$\mathbf{A B - V R D P 2 0 0 R}$	e^{*}	11.5	11.5	2.4

Las válvulas de compuerta permitenel paso libre del fluido o lo bloquean con su compuerta en forma de cuchilla que se abre y se cierra. Pueden ser utilizadas en aguas limpias o residuales a un máximo de temperatura $70^{\circ} \mathrm{C}$.

Ventajas de la Válvula:

Sellado en el Vástago: Tres sellos que ofrecen seguridad, anillo limpiador NBR que lo protege del exterior y 4 anillos de poliamida que evitan la corrosión.

Cuerpo y tapa: Tiene un ensamble duradero por su junta en la ranura de la válvula que impide fuga de presión y tornillos galvanizados sellados que impiden la corrosión aunque estén expuestos al medio ambiente.

Tuerca de cuña: Reduce piezas móviles de la válvula, minimiza la corrosión y mal funcionamiento, está hecha de latón resistente con capacidades lubricantes y compatibilidad con el vástago de acero inoxidable.

Tuerca Vulcanizada: Está fabricada en hierro dúctil y vulcanizado completamente. No hay piezas de hierro que estén expuestas al medio y la excelente vulcanización impide que arrastre la corrosión. Las guías en la cuña y cuerpo de la válvula aseguran un cierre uniforme independientemente de la alta presión. Además estas guias previenen una sobre carga en el vástago.

Operación:

Las válvulas pueden ser operadas por rueda de mano, cabezal, engranaje helicoidal, actuador eléctrico etc. según las necesidades de los clientes.

No.	DESCRIPCIÓN	MATERIAL
(1)	Cuerpo	Hierro dúctil
2	Disco	EPDM
3	Tuerca del vástago	CZ132
4	Empaque tapa junta	NBR
5	Vástago	Acero inox. 431
©	Tapa	Hierro dúctil
7	Anillo de sujeción	CZ132
8	O-ring	NBR
(9)	Caja prensa superior	Hierro dúctil
(10)	Volante	Hierro dúctil
(1)	Pernos	Acero inox. 316
(12)	Cubre polvo	NBR
(13)	O-ring	NBR
(1)	Separadores	Nylon 66
(15)	O-ring	NBR
(18)	Tornillos	Acero inox. 304

| CÓDIGO | DN
 (INCHES) | L
 (CM) | D
 (CM) | K
 (CM) | G
 (CM) | M
 (CM) | H
 (CM) | n-d1
 (CM) | \mathbf{b}
 (CM) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A B - V D C 2 0 0 B ~}$ | 2^{*} | 17.8 | 15.2 | 12.1 | 9.21 | 20 | 21.5 | $4-\varnothing 1.9$ | 1.9 |
| AB-VDC300B | 3^{*} | 20.3 | 19.1 | 15.3 | 12.7 | 25.4 | 26.5 | $4-\varnothing 1.9$ | 2.38 |
| AB-VDC400B | 4^{*} | 22.9 | 22.9 | 19.1 | 15.7 | 25.4 | 31.5 | $8-\varnothing 1.9$ | 2.38 |
| AB-VDC600B | 6^{*} | 26.7 | 27.9 | 24.1 | 21.6 | 31.5 | 38.5 | $8-\varnothing 2.2$ | 2.54 |

No.	DESCRIPCIÓN	MATERIAL
(1)	Tapa superior	Hierro gris
(2)	Tornillo	Acero inox. 304
(3)	Empaque	NBR
(4	Tapón	Hierro gris
$\mathbf{3}$	Disco flotante	Acero inox. 304
$\mathbf{6}$	Cuerpo	Hierro gris

- Presión máxima de trabajo: $15 \mathrm{~kg} / \mathrm{cm}^{2}$
- Temperatura del fluido: $-15^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$

La válvula expulsora de aire es útil para evacuar la presencia de aire en tuberias y asi reducir el ruido o turbulencia que genera.

Al instalarse en la succión de las bombas de superficie, protege al equipo contra el daño que causa el efecto de la cavitación.

Este modelo de válvulas solamente puede instalarse en posición vertical y debe ser colocada en el punto más alto de la tuberia, pues es ahí donde se acumula el aire (por su baja densidad en relación al agua).

CÓDIGO	ØROSCA (NPT)	$\mathbf{H}(\mathrm{cm})$	$\mathbf{D}(\mathrm{cm})$	PESO (kg)
AB-VEDAO5OR	$1 / 2^{*}$	13.1	12	2.5
AB-VEDAO75R	$3 / 4^{*}$	13.1	12	2.5
AB-VEDA100R	1^{*}	13.1	12	2.5
AB-VEDA150R	$11 / 2^{*}$	21	19	4
AB-VEDA200R	Z^{*}	21	19	4

TEE CON MANÓMETRO Y SWITCH DE PRESIÓN
Con refuerzos de acero inoxidable en las roscas hembra,

CÓDIGO	\emptyset ROSCA (NPT)	MATERIALES
AB-TMSP	1^{*}	PLÁSTICO

MANÓMETROS

CÓDIGO	RANGO	DIÁMETRO	CONEXIÓN SUSPENSIÓN	
MA100-1/4	0-100 PSI	2^{*}	INFERIOR	SECO
MA100-1/4G	0-100 PSI	2.5^{*}	INFERIOR	GLICERINA
MA100-1/4GP	$0-100$ PSI	2.5^{*}	POSTERIOR	GLCERINA
MA160-1/4	0-160 PSI	2^{*}	INFERIOR	SECO
MA200-1/4	$0-200$ PSI	2^{*}	INFERIOR	SECO
MA200-1/4G	$0-200$ PSI	2.5^{*}	INFERIOR	GLICERINA

RANGO VARIABLE

SWITCHES DE PRESIÓN

CÓDIGO	RANGO PRE-CALIBRADO	PRESIÓN MAX.	CONEXIÓN
$\mathbf{3 5 1 2 0 3 0 3}$	$20-40 \mathrm{PSI}$	175 PSI	Macho 1/4* NPT
$\mathbf{3 5 1 2 0 3 0 3 - E ~}$	$20-40 \mathrm{PSI}$	175 PSI	Espiga l/4*
$\mathbf{3 5 1 2 0 3 0 4}$	$30-50 \mathrm{PSI}$	175 PSI	Hembra 1/4* NPT
$\mathbf{3 5 1 2 0 3 0 4 - E ~}$	$30-50 \mathrm{PSI}$	175 PSI	Espiga l/4*
$\mathbf{A B - S P - P R O 6 ~}$	$14-43 \mathrm{PSI}$	87 PSI	Macho 1/4* NPT
AB-SP-PRO10	$72-87 \mathrm{PSI}$	145 PSI	Macho 1/4* NPT

VALVULAS CHECK DE 5 VIAS

CÓDIGO	\varnothing ROSCA (NPT)	MATERIALES
$A B-$ VC5V100	1^{11}	
$A B-$ VC5V125	$1 / 4^{\prime}$	LATÓN
$A B-V C 5 V 150$	$1 \frac{1}{2^{\prime \prime}}$	

[^2]

MANGUERAS DE SUCCIÓN CONVALVULA DE PIE

CÓDIGO	DIÁMETRO DE SUCCIÓN	LONGITUD
AB-MSVP2	$l^{\prime \prime}$	$2 m$
AB-MSVP4	$l^{\prime \prime}$	$4 m$

*Solo recomendable para bombas de móximo l' de succión. Flujo máx 60 I/min.

ABRNS2C

ABRNK2C

ABFAR10
Ideal para tratamiento de agua ya que es libre de mercurio.

CODO DE 90° MACHO/HEMBRA CON TUERCA LOCA

Conecta cualquier bomba con descarga de 1^{\prime} a un EASY-PRESS

CÓDIGO	\varnothing ROSCA (NPT)	MATERIALES
CP-1OOMH	1^{*}	PLÁSTICO

FLOTADORES

Automatizan el paro y arranque de su bomba, evitando derrames de agua ó trabajo en seco.

CÓDIGO	CORRIENTE	POTENCIA 127 V	$\begin{aligned} & \text { IAX. BOMBA } \\ & 220 \mathrm{~V} \end{aligned}$	LONG. DE CABLE
ABRNS2C	15 A	1 HP	2 HP	2 m
ABRNK2C	16 A	1 HP	2 HP	2 m
ABRNS5C	22 A	1.5 HP	3 HP	5 m
ABRNS10	22 A	1.5 HP	3 HP	10 m
ABFAR10	10 A	3/4 HP	15 HP	10 m

"Los modelos con terminación "C" incluyen contrapeso.

TRANSDUCTORES DE PRESIÓN

CÓDIGO	DESCRIPCIÓN		LONGITUD	PRESIÓN
Ø CONEXIÓN				
EVANS-PRO-TP10	Transductor de presión	2 m	$0-10 \mathrm{BAR}$	$1 / 4^{\prime \prime}$
EVANS-PRO-TP16	Transductor de presión	2 m	$0-16 \mathrm{BAR}$	$1 / 4^{\prime \prime}$
RBV-TP16-CABL	Cable para transductor de presión	2 m	$\mathrm{~N} / \mathrm{A}$	N / A

[^0]: Material: Lámina rolada calibre \#14. Membrana de Butilo.

[^1]: Protección integral para su motor de:

 - Bajo voltaje - Corto circuito
 - Caida de fase - Sobrecarga

[^2]: -Todas las válvulas tienen:
 2 conexiones hembra de $1 / 4^{\prime}$ NPT
 (para manómetro y switch de presión/transductor de presión).
 1 conexion hembra de l" NPT (para hidroneumático).

